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Abstract
In metallic quantum wires, electron transport at low temperatures (<10 K)
is anticipated to be modified by acoustic-phonon confinement. This effect
is investigated numerically through the dynamic conductance dJ/dE . The
role of the energy loss through the phonons from the wire to a substrate at
Ts = 0.4 K is studied in cases of both strong (supported wire) and very
weak (free-standing wire) acoustic coupling to the substrate characterized by
the escape time τs. The phonons are shown to remain in the 1D regime until
the electron energy is about 0.8 K, much smaller than the minimum mode-
separation energy. The first subband essentially contributes to dJ/dE for a large
phonon escape time τs, whereas for a small one it is impossible to distinguish
the different modes. Finally, it is shown that the appearance of two peaks only in
dJ/dE , whatever the value of τs, results from the decoherence of phonons due
to surface roughness. The case of single-walled carbon nanotubes is discussed.

1. Introduction

Transport phenomena have been extensively studied in nanoscale structures over the past
decades, with a particular interest in the role of confined phonons. Confined optical
phonons were first considered at rather high temperatures (200–300 K) and their scattering
of electrons subsequently analysed either in semiconductor superlattices [1] or in quantum
wires (QW) [2–5]. At low temperatures (∼15 K), Fasol et al [6] observed confined optical-
phonon modes up to a high order in GaAs/AlAs quantum wells and examined the role of
interface roughness on the dispersion. More recently, Yao et al [7] have shown that the
current–voltage characteristics observed in metallic single-walled carbon nanotubes (SWNT)
at different temperatures (4–200 K) can be explained by optical-phonon emission which
is the dominant electron scattering mechanism at high fields. Though acoustic-phonon
confinement was noted a long time ago in the early work of Grigoryan and Sedrakyan [8]
in free-standing wires, acoustic phonons have received much less attention than optical
phonons. Nevertheless, acoustic-phonon confinement has been studied theoretically by many
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authors [9–14] in semiconductor QW or quantum wells with different geometries along with
the electron-acoustic phonon scattering rates that dominate the electron scattering at low
temperatures. In metallic nanostructures, the effect of acoustic-phonon confinement on the
transport properties is an interesting problem from a fundamental point of view. It is also a
somewhat puzzling problem [15], since the initial experimental investigations about the effects
of phonon dimensionality on the electron–phonon relaxation time either in supported or in free-
standing films [16, 17] at low temperatures (�0.5 K in the experiment of Di Tusa et al [16] and
�1.4 K in those of Kwong et al [17]) have led to an open question rather than to a clear
answer. More recently, besides the basic interest in phonons in intriguing carbon nanotubes,
the role of acoustic phonons in the scattering of electrons in metallic single-walled carbon
nanotubes at ambient temperature has been studied by several groups either theoretically [18]
or experimentally [19]; the observed scattering rates at ambient temperature have shown that
acoustic-phonon scattering is relevant at low biases [19]. The difficulties in the fabrication
techniques [20] of nanowires are probably at the origin of the small number of experimental
results in the field of mesoscopic phonon physics. Nevertheless, following Potts et al [21],
Seyler and Wybourne [22] carried out experiments in supported metal Au wires at a substrate
temperature Ts = 1.2 K and attributed the observed resonances in the electric resistance to
the acoustic-phonon confinement and to the resulting reduced acoustic-phonon dimensionality.
Their results disagree with the conclusions of Di Tusa et al [16] and Kwong et al [17]. Several
authors [23, 24] claim that because of the width of the Bose–Einstein distribution compared to
the average phonon energy, the contributions of the different acoustic-phonon subbands cannot
be distinguished and the resolution of individual levels beyond the lowest-lying ones is not
allowed.

In this paper we address the effect of phonon confinement on electron transport in metallic
quantum wires at low temperatures (<10 K). When the wire is heated by an electric field, its
conductivity is expected to be affected by the modifications of the phonon spectrum resulting
from the spatial confinement of acoustic phonons. Confinement occurs when the phonon phase
coherence length is larger than the lateral boundary separation d [25]. It is generally assumed
that the temperature where the phonons get confined corresponds to a dominant phonon
wavelength of the order of this lateral dimension; this is the dominant phonon-wavelength
criterion. The resonances observed by Wybourne and his group in the resistance of electrically
heated metal wires were assumed to be related to the acoustic modes in the wire. In their
pioneering paper, Seyler and Wybourne [22] concluded that the periodicity of the resonances
corresponds to an electron energy gain equal to the minimum subband spacing vsπ/d with the
emission of phonons in a higher acoustic subband of the wire (vs is the sound velocity).

Another point to consider in the determination of the phonon spectrum and its relation to
electron transport in a metallic wire is the rate of energy loss from the wire through the phonons.
We characterize this loss by a phonon escape time τs. It has been shown experimentally [26]
that the rate of energy loss from a film at low temperatures depends on the details of the phonon
escape time. In the strong acoustic coupling limit between a supported wire and the substrate,
the phonons remain nearly in equilibrium at a substrate temperature Ts and this implies a
very short phonon escape time from the wire compared to the phonon relaxation time on the
electrons. On the contrary, a weak acoustic coupling implies a large phonon escape time and
heating of the phonon system by the electrons. The extreme case is a free-standing or self-
supported wire. In the two latter cases, the departure of the stationary phonon distribution from
a Bose–Einstein distribution at the substrate temperature is expected to be significant and to
depend strongly on the phonon escape time. Therefore it seems that a weak acoustic coupling
may provide the best conditions for phonon confinement; with strong acoustic coupling, the
wire and the substrate together may behave as a single three-dimensional (3D) medium.
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The above phonon escape time is a phenomenological representation of the local specular
boundary scattering of phonons on the lateral surfaces of the wire. Moreover, real surfaces are
known to be rough on the scale of hundreds of angstroms [27], i.e. the order of magnitude of
the mean thermal phonon wavelength at 1 K. The surface irregularities must play an important
role in phonon transport since the nature of the dispersion branches arises from the spatial
quantization of the phonons determined by the free surfaces and the geometry of the wire.
When surface roughness scattering is relevant [28], the phonons are expected to undergo
partially diffuse scattering [29] as well as local specular scattering. In their experiments on
suspended nanostructures, Tighe et al [30] showed that diffuse surface scattering is dominant
from 1 to 10 K. According to the dominant phonon-wavelength criterion with λph = hvs/(2kT )

(k is the Boltzmann constant), size quantization and the related existence of acoustic-phonon
subbands occur at low temperatures T � 5 K for lateral dimension ∼20 nm as a result of
interference of the incident and specularly reflected waves. Increasing the phonon temperature
from an initial value smaller than 1 K, the dominant phonon wavelength becomes of the order
of magnitude of the surface asperities at T ≈ 1 K. The resulting partially diffuse boundary
scattering destroys the coherence with the incident wave and the subband structure may be
partly removed. In this paper we will consider diffuse roughness scattering along with specular
reflection; they are the major sources of acoustic-phonon scattering in a metallic wire besides
electron scattering. They play quite different roles and may be more or less efficient according
to the temperature. Spontaneous decay of phonons via three-phonon processes is assumed to
be inefficient in nanowires [27].

Previously some parameters involved in the dynamic resistance of thin metallic wires with
acoustic-phonon confinement have been analysed [31] in an attempt to determine the conditions
required to observe features due to the phonon subbands at a temperature Ts = 400 mK.
As far as the phonon dimensionality is concerned, it has been shown that the phonons are
of intermediate dimension between 2 and 3. It has also been shown in a first comparison
with experiments [32] at Ts = 50 mK that by numerical calculations it seems possible to
get structures similar to those experimentally observed for the electron resistance; however,
no straightforward relationship between the electron temperature of the single dynamic
conductance maximum obtained and the temperature corresponding to the mode separation
energy at the zone centre has been pointed out.

In this paper, we analyse the contribution of the acoustic-phonon subbands to the electron
transport in a AuPd wire heated by an electric field; we consider different acoustic couplings to
the substrate with different phonon escape times. We also analyse the role of surface roughness
and the way the loss of phonon coherence affects the electron transport.

2. Model

2.1. Phonon modes

We consider metallic wires of rectangular cross section deposited on a substrate at a temperature
Ts = 400 mK. The width d = 20 nm and thickness b = d/3 are small enough so that acoustic
phonons get confined with a dominant wavelength λph = hvs/(2kTs) ≈ 250 nm � d . It is well
known that an analytical solution of the field equations with appropriate boundary conditions
has not been found for a rectangular quantum wire [33] and that Morse’s ansatz [34] with
approximate hybrid modes calculated assuming separable boundary conditions has often been
used. However, the normal modes of acoustic phonons have been precisely calculated using a
so-called xyz algorithm [35] that points out the existence of edge modes at the wire corners. We
use here the hybrid modes corresponding to the width and thickness of the wire with an aspect
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ratio d/b = 3 to simplify the calculation, hence missing the edge modes. Therefore, we write
the following dispersion relationship [33]:

ω2 = v2
s

[
β2 +

(nπ

d

)2 +
(mπ

b

)2
]

= v2
s

[
β2 + q2

⊥
] = v2

s β
2 + ω2

nm (1)

where β is the longitudinal phonon wavevector along the length L of the wire. The integers n
and m are the subband indices. The lowest vibration mode n = m = 0 has a linear dispersion
with a transverse wavevector q⊥ = 0 without a frequency gap at q = 0. From (1), we deduce
the density of states gnm(ω):

gnm(ω) = (2πdbvs)
−1ω (ω2 − n2ω2

od − m2ω2
ob)

−1/2 = (2πdbvs)
−1ω (ω2 − ω2

nm)−1/2 (2)

ωod = πvs/d and ωob = πvs/b are the cut-off frequencies characteristic of the width and
thickness modes, respectively, of the wire. At the frequency ωnm = (n2ω2

od + m2ω2
ob)

1/2

a singularity appears in the density of states: it becomes infinite and the group velocity
vg = dω/dβ = vsω

−1(ω2 − ω2
nm)1/2 is then equal to zero.

2.2. Electron temperature

We assume an effective electron temperature Te resulting from electron–electron thermalizing
collisions that do not contribute to the energy losses from the electron gas. From the
Sommerfeld expansion [36] of the internal-energy density of the Fermi electron gas in the
presence of an electric field E, Te satisfies the equation:

(kTe)
2 = (kTs)

2 + 6π−2(eEli)
2 with li = (Dτi)

1/2 whenever li < L (3)

D = v2
f τe/3 is the inelastic diffusion constant, vf is the Fermi velocity, τe is the electron elastic

relaxation time and τi is the energy-loss lifetime [37]. The term eEli represents the energy
gained by an electron during its diffusion over li through the disordered metal. The scattering
of the electrons by the acoustic phonons is assumed to be the dominant source of inelastic
scattering. In these conditions, the energy relaxation time at low temperatures can be written
as a power law of Te [38, 39] resulting in an inelastic diffusion length li that depends on the
phonon dimensionality p:

li = (Dαi)
1/2T −p/2

e = χT −p/2
e with τi = αiT

−p
e (4)

where χ is a constant.

2.3. Electron dynamic conductance and phonon power balance

The power absorbed by the electrons from the electric field scales with the resistivity ρ that is
controlled by the elastic temperature-independent impurity scattering. In the steady state, the
power per volume F absorbed by the electrons is entirely transmitted to the phonon system;
following the approach initially introduced by Perrin and Budd [40], we can therefore write the
balance equation involving the phonon relaxation times and the different subbands:

E2

ρ
= J E =

∑
nm

[∫
dωh̄ωgnm(ω)

N (ω, Te) − N (ω, Ts)

τs(ω) + τep(ω)

]
=

∑
nm

(J E)nm =
∑

n

Fn = F.

(5)

N(ω, T ) is the Bose distribution at T . The energy relaxation time on the electrons τep given by
Pippard [41] and valid whatever qle is independent of the electron temperature Te. The phonon
escape time is assumed to be of the form τs(ω) = τso(x) f (n, ω) with τso(x) = ηox/vs; for
the fundamental mode, x = L and for the modes (nm), x = d . The acoustic parameter ηo is a
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constant and the dependence of the escape time on the phonon subband is introduced through
the function f (n, ω) = ω/(nωod) [31]: we assume a mean phonon escape time independent of
m and b.

We will investigate the dynamic conductance dJ/dE deduced from (5):

dJ

dE
= E−1 (dTe/dE)(dF/dTe) − (

F/E2
) =

∑
n

(dJ/dE)n =
∑

n

[∑
m

(dJ/dE)nm

]
. (6)

The roughness of the surface is introduced through a Te-dependent function 0 < pn < 1
that filters the power Fn stored in the different confined modes: pn = 1 for mirror like scattering
without any modification of Fn ; pn = 0 in the diffuse scattering limit. According to Ziman [29],
we assume:

pn = exp(−wn) with wn = 4π3(ha/d)2
[
5kTe/(nh̄ωod)

]2
(7)

where wn depends on the ratio ha/d of the height ha of the surface asperities to the width d
of the wire. The expression (kTe/dh̄ωod) in (7) comes from the wavelength dependence of wn

introduced by Ziman assuming λ = 2π h̄vs/kTe = 2h̄ωod/kTed . With the wire constants
considered here, we get h̄ωod ≈ 5 K and 5kTe/h̄ωod ≈ 1 at Te = 1 K. The roughness
parameters are not known but they can be estimated from localization studies in free-standing
nanostructures [42] or from thermal conductance [28, 30].

3. Results and discussion

3.1. Phonon coherence and phonon escape time

We have performed the numerical calculations for a rectangular wire of length L = 5 mm
assuming a mean sound velocity vs = 4.2 × 103 m s−1 and an elastic electron mean free path
le = 20 nm. Therefore, for a Fermi velocity vf = 1.4 × 106 m s−1, the value of the inelastic
diffusion constant is D ≈ 103 m2 s−1; the resulting inelastic mean free path li is about a few
micrometres (≈2 μm) with a phonon dimensionality p = 1.3 according to previous results and
χ = 2 × 10−6 deduced from experimental results [31].

In figures 1 and 2, we show the calculated individual modes (dJ/dE)nm as a function of Te

obtained with the acoustic parameter ηo = 2000 and 20 respectively and with m = 0. For both
values of ηo, the successive results

∑
n(dJ/dE)n with n increasing from n = 0 to nmax chosen

in our calculations, are shown in the inset: the solid line gives the characteristic behaviour
of the dynamic conductance dJ/dE resulting from the contribution of the different modes
considered (curve ‘sum’ in the main figure). When the three first values of m are introduced
in the calculations instead of the case m = 0 considered here, the variations obtained in
dJ/dE are not significant [31] at least at low temperature. The common feature of the curves
(dJ/dE)nm corresponding to the confined modes (n �= 0) is the occurrence of a maximum for
a value Ten(ηo) of the electron temperature, which is an increasing function of n as expected;
but for a given n, Ten(ηo = 2000) < Ten(ηo = 20) and the height of the peak is as small as ηo

is large. For ηo = 2000, the resulting curve dJ/dE exhibits but one maximum at Te ≈ 0.9 K,
i.e. a value slightly larger than the position at 0.8 K of the peak of the first mode n = 1. Its
width reaches rapidly a limit smaller than 2 K when the number of modes is increased, as is
seen in the inset. In contrast, for ηo = 20, dJ/dE spreads over an electron temperature range
as large as the number of modes included is large. It also exhibits a maximum at Te ≈ 0.9 K,
and either a bump or a second maximum at a temperature Te > 0.9 K. The position of the
latter is shifted towards higher values of Te as n increases. For both values of ηo the peak at
Te ≈ 0.9 K essentially results from the contribution of the first calculated confined mode n = 1.
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n=0+1+2+3+4

n=0
n=0+1
n=0+1+2
n=0+1+2+3

Figure 1. Contribution (dJ/dE)nm of the first successive subbands n = 0–4 (m = 0) to the
dynamic conductance (SI units) and their sum (solid line) for an acoustic parameter ηo = 2000.
The successive results

∑
n(dJ/dE)nm from n = 0 to 4 are shown in the inset.

n=0+1+2+3+4
n=0+1+2+3+4+5

n=0
n=0+1
n=0+1+2
n=0+1+2+3

Figure 2. Contribution (dJ/dE)nm of the first successive subbands n = 0–5(m = 0) to the dynamic
conductance (SI units) and their sum (solid line) for an acoustic parameter ηo = 20. The successive
results

∑
n(dJ/dE)nm from n = 0 to 5 are shown in the inset.

To explain these results, it is interesting to consider the non-equilibrium phonon distribution
rate [N(Te) − N(Ts)]/[τs(ω) + τep(ω)] in (5), that depends on Te through N(Te) only, and
the involved relaxation times τs(ω) and τep(ω). These times are shown in figure 3 for both
values of ηo. For ηo = 2000, the escape time τs(ω) is shown for the subbands n = 1 and
2 along with τso(x = d). They satisfy the relations τso(d) = τep(ω ≈ 100 × 1010 s−1)

and τs(ω) � τep(ω) for ω > 80 × 1010 s−1 for the subband n = 1. The behaviour of this
subband is then essentially determined by ωN(Te)/τs(ω). On the contrary for ηo = 20, the
behaviour of the subbands is determined by ωN(Te)/τep(ω) over a large range of frequencies
ωod � ω � 6ωod for n = 1 and over a still larger range for n = 2. In the steady state, the
rate of change with the electron temperature dF/dTe of the power F per volume (5) transferred
from the electrons to the phonons must be equal to the rate of change of the power absorbed by
the electrons from the field γ Te/τel(Te). By equating these two rates:
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Figure 3. Phonon relaxation time on the electrons τep (solid line) and phonon escape time τs for
the subbands n = 1 (dashed–dotted line) and n = 2 (dotted line) versus the phonon frequency ω.
τso(d) = ηod/vs (dashed line) is independent of the subband.

dF/dTe =
∑
nm

{∫
dωh̄ωgnm (ω)

[
τs(ω) + τep(ω)

]−1 [
dN (Te)/dTe

]} = γ Te/τel (Te) (8)

we obtain the electron energy relaxation rate τ−1
el (Te); it depends on the phonon relaxation

times, on Te and on the electron specific heat γ . Using the probing function P(ω) first
introduced by Kanskar [43],

P(ω) = ω2

τs (ω) + τep(ω)
sh−2

[
h̄ω/ (2kTe)

]
(9)

the electron energy-relaxation rate τ−1
el (Te) can be written as:

τ−1
el (Te) = h̄2

4kγ T 3
e

∑
modes

[∫
dω gnm(ω)P(ω)

]
. (10)

Therefore, the phonon function P(ω) characterizes the rate of energy transfer from the
electrons to the phonons at a temperature Te. The function Po(ω) obtained with τs(ω) =
τso(d) = ηod/vs is shown in figure 4 for different temperatures Te = 0.6, 0.7, 0.8 and 1 K
and for both values of ηo: ηo = 2000 and ηo = 20. As Te is increased, the curves spread
over a larger range of frequencies whatever the value of ηo, and phonon frequencies ω > ωod

are involved in Po(ω) as soon as Te reaches 0.7 K. For ηo = 2000, the contribution of these
frequencies to the integral in (10) remains small until Te ≈ 0.8 K where the half-height value
of the curve P(ω) occurs at ω = ωod. After that frequencies larger than ωod become important
in (10) and therefore in the energy transfer from the electrons to the phonons. The subband
n = 1 begins to be excited, whereas for Te � 0.8 K the electron energy relaxes towards
the 1D phonon system with just the lowest order channel n = 0 involved. It is also seen in
figure 4 that the curves Po(ω) with both values of ηo are close together for low values of Te

(0.6–0.7 K) but they split apart as Te increases. According to the quite different values of the
ratio τep/τso(d) in (9), the curve with ηo = 20 is always above the curve with ηo = 2000.
It is also larger as soon as Te � 0.7 K. The phonon system with a small escape time τs

quickly loses its 1D nature as Te increases from its initial value Te = Ts. These results are
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Figure 4. The function Po(ω) with τs(ω) = τso(d), characteristic of the rate of energy transfer
from the electrons to the phonons, shows that the subband n = 1 begins to be excited at Te ≈ 0.8 K
for ηo = 2000 whereas for ηo = 20 it is excited for lower temperatures.

Figure 5. Comparison of the function R(ω) = ω[N(Te) − N(Ts)]/[τs(ω) + τep(ω)] with ηo =
2000 to RB(ω) = ωN(Te)/τep(ω). The same comparison is shown in the inset with ηo = 20; the
importance of the phonon escape time is clearly seen.

confirmed by the analysis of the curves in figure 5 where we show the relevant phonon function
R(ω) = ω[N(Te) − N(Ts)]/[τs(ω) + τep(ω)] in the expression (5) of the power per volume F
and the function RB(ω) = ωN(Te)/τep(ω) for comparison. For ηo = 2000, i.e. a large acoustic
mismatch between the film and the surrounding medium and therefore a nearly free-standing
nanostructure, we observe an important discrepancy between the curves for Te � 1 K; with
τep(ω) < τs(ω) as seen in figure 3, the phonons of the subband n > 2(ω � 2ωod) are roughly
in thermal equilibrium with the electrons and do not receive any energy. The subband n = 2
begins to be populated by the relaxation energy of the electrons at Te ≈ 1.4 K. On the contrary,

8
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Figure 6. Separate contributions of the subbands n = 1–4 (dashed and dotted lines) and the
resulting dJ/dE (solid line, SI units) with a large phonon escape time in the presence of surface
roughness that results in phonon decoherence.

for ηo = 20 (inset of figure 5), R(ω) (full line) and RB(ω) (dotted line) are the same but at
temperatures Te � 0.7 K where they exhibit a small difference; with τs(ω) < τep(ω) (figure 3),
the phonons of the subbands n � 2 are in thermal equilibrium at Ts = 0.4 K for Te > 0.7 K:
the 3D phonon system is given a large amount of energy by the emitting electrons.

An interesting result is that, contrary to what was thought in the early studies [22], the
temperature ≈0.8 K required for the emission of phonons by the electrons in the first subband
n = 1 is much lower than the temperature corresponding to the mode separation energy
h̄ωod ≈ 5 K at β = 0 in the wire considered here.

From the above discussion, we can explain both the maximum observed in dJ/dE
(figure 1, namely ηo = 2000, and figure 2, namely ηo = 20) essentially due to the first subband
n = 1 and the very small contribution of the higher subbands for ηo = 2000. We have also
pointed out the transition from the 1D regime to the 3D regime for ηo = 20 and the important
contribution of the higher subbands that is clearly seen in figure 2. However, the contributions
of the different acoustic-phonon subbands n > 1 to dJ/dE cannot be distinguished for ηo = 20
and the resulting bump in figure 2 must be attributed to whole modes n > 1.

3.2. Surface roughness and phonon decoherence

Figures 6 and 7 show the calculated individual modes (dJ/dE)nm of the dynamic conductance
with m = 0 and the successive values of n (n = 1–4) for both values of ηo, 2000 and 20 when
the power Fn stored in the confined modes is limited as a result of surface roughness and diffuse
scattering. The solid line is the sum over n of the modes considered: it shows the characteristic
behaviour of the dynamic conductance dJ/dE when diffuse scattering is present. We assume
the height of the asperities ha = 0.4, d = 80 Å. In figure 6 (ηo = 2000), it is seen that the peaks
of the modes n = 1 and 2 are quite distinct, contrary to figure 1 and in contrast to the peak of
the mode n = 3 which is quite close to the curve (dJ/dE)n=2,m=0 but not overlapped by the
curve n = 2 as in figure 1. The curves obtained with (7) exhibit oscillations and are narrower
than the corresponding curves in figure 1. Roughness in this case leads to a splitting of the first
two modes but not of the other modes that contribute very little to dJ/dE . In figure 7, with a
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Figure 7. Separate contributions of the subbands n = 1–5 (dashed and dotted lines) and the
resulting dJ/dE (solid line, SI units) with a small phonon escape time in the presence of surface
roughness that results in phonon decoherence.

good coupling of the phonons to the surrounding medium (ηo = 20) and a small escape time,
the three first peaks are rather well separate. However, as in the previous case of a large phonon
escape time, we see but two peaks in dJ/dE . The phonon decoherence is more efficient for a
large phonon escape time; it enhances the relative importance of the first confined mode.

The phonon decoherence must still be enhanced in true free-standing nanostructures that
correspond to an upward limit of a very large phonon escape time. For a small phonon escape
time, the phonon system is already in interaction with the surrounding medium and surface
roughness enlarges the decoherence of the phonon system.

4. Conclusion

We have investigated the electron dynamic conductance dJ/dE in metallic nanowires at
low temperatures (Te = 0.4–7 K) where the acoustic phonons exhibit reduced-dimensional
behaviour. We have used the phonon dispersion relationship for a rectangular wire obtained
within the hybrid modes approximation. The electron dynamic conductance has been expressed
as a function of the phonon parameters and we have calculated the contribution (dJ/dE)nm of
each subband (n, m = 0), the thickness modes being negligible at low temperatures [31].
According to the dominant phonon-wavelength criterion, the phonons are anticipated to remain
in the 1D regime until the electron energy reaches h̄ωod, i.e. a temperature of about 5 K for the
wire considered here. In this paper, we have shown that the mode separation energy at the centre
of the zone is not the energy required to get phonons emitted by the electrons in the first subband
n = 1; this subband begins to be excited at a temperature Te ≈ 0.8 K for a large phonon escape
time. Our results agree with the experiments of Schwab et al [24] in suspended insulating
nanostructures of lateral dimensions <100 nm where the thermal conductance measured with
decreasing temperature is seen to reach the one-dimensional limit at Te ≈ 0.8 K. When the
phonon escape time is small, a phonon transition from the 1D to the 3D regime is clearly seen.
In the latter case all the phonon modes are excited by the electrons and contribute to dJ/dE ,
but it is impossible to distinguish their individual contributions. The modes (dJ/dE)nm cannot
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be separated. For a large phonon escape time, we have shown that dJ/dE is essentially the
contribution of the first subband.

When surface roughness is taken into account, we have shown that the behaviour of dJ/dE
depends on the phonon escape time. For a large phonon escape time, we can see two separate
peaks in figure 6, the first mode n = 1 being largely enhanced relative to the mode n = 2.
For a small escape time we also see two peaks, the first one corresponding to the mode n = 1
whereas the second one results from the sum over the modes n > 1. Therefore the phonon
decoherence occurring in the metallic wire and due to surface roughness leads in the end to the
appearance of two peaks only in dJ/dE , whatever the phonon escape time.

The above calculations apply to single-wall carbon nanotubes. Indeed, by measuring the
temperature-dependent specific heat of purified SWNT, Hone et al [44] have shown direct
evidence of 1D quantized phonon subbands. These subbands result from the splitting of each
of the four acoustic bands (one longitudinal, two transverse and one torsional) [45] due to the
periodic boundary conditions on the circumferential wavevector. The small size and the high
phonon velocity result in a much larger energy splitting between phonon subbands than in the
metallic nanowires considered above; it may reach 30 K for the first subband of a (10, 10) tube
of diameter 1.25 nm [44]. At low temperatures only the acoustic subbands are populated.
The electron–phonon coupling has been shown to be strong for the longitudinal mode in
suspended SWNT [46]. The contributions to the conductance of the different subbands with
small longitudinal wavevector β are expected to be easily separated when the temperature is
increased, as has been shown in current–voltage characteristics in recent transport experiments
by Sapmaz et al [46]. The main causes of roughness in SWCN are defects and small variations
of the tube diameter. Recently, chemical processes of purification and dispersion have been
addressed [47]; they result in very pure SWCN. With these techniques the decoherence of
phonons in SWCN may be expected to be monitored in future investigations.
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